STUDIO ASSOCIATO ECOTECH

dott. chim. Francesco Chirola - dott. biol. Antonio Iandolo Via Ferrovia, 46 - 83042 Atripalda (Av)

Tel/fax: 0825 624018 - email: ecotek2016@gmail.com

C.F. e P. IVA: 02877560645

Consulenze in campo Ambientale e Industriale HACCP – Acque –Fonometrie – Rifiuti Sicurezza e Igiene luoghi di lavoro Pratiche AUA – Emissioni

RELAZIONE TECNICA

CONTROLLO SEMESTRALE EMISSIONI

D.D. n. 360 del 16/12/2010

• Meres s.r.l.

Via Pianodardine – Zona A.S.I. – Avellino.

Il Tecnico: Dott. Chim. Francesco Chirola

Premessa

Sono state effettuate le misurazioni delle emissioni presso la ditta **Meres s.r.l.**, sita in Via Pianodardine – Zona A.S.I. di Avellino, in merito ai controlli semestrali relativi al primo semestre dell'anno 2023 degli impianti autorizzati con D.D. 360 del 16/12/2010.

Sono state controllate le emissioni provenienti dai seguenti impianti:

• Tunnel Espansione Colata (emissione E1-E2-E3-E4-E5).

Sono stati effettuati n. 2 campionamenti delle emissioni sui camini autorizzati, eseguiti in regime di funzionamento ordinario degli impianti, nei giorni 28-29 e 31/5/24, indicati dal responsabile di produzione. Poiché le suddette emissioni provengono dalla stessa attività lavorativa e dallo stesso tunnel di espansione, esse sono state considerate equivalenti; i risultati riportati nel rapporto di prova allegato, sono stati ricavati campionando le frazioni di tutti e 5 i camini e poi associando la concentrazione complessivamente rilevata a ciascun camino.

Metodi di campionamento

Per i campionamenti, si è fatto riferimento alla norma UNICHIM 158:1988.

Le apparecchiature usate per i prelievi sono state n. 2 campionatori a flusso regolabile della ditta Tecora, mod. TCR (matr. 111605) e mod. MK2 (matr. 1626379V).

Per la determinazione della velocità e della portata dei flussi gassosi, si è fatto riferimento alla norma UNI EN ISO 16911-1:2013, utilizzando un tubo di Darcy (matr. TPS-08-1000 T) ed un analizzatore di flusso mod. MRU MF PLUS (matr. 014816).

I composti organici volatili sono stati campionati facendo riferimento alle modalità previste nella norma UNI EN 13649:2015.

Il TDI è stato campionato in accordo alle modalità previste nella norma OSHA 42.

Si precisa comunque che i prelievi sono stati effettuati facendo riferimento alle linee guida delle normative UNI vigenti laddove possibili ed applicabili, in base alla tipologia e alla struttura dei punti di prelievo e, più in generale, agli impianti autorizzati.

Le analisi sui campioni prelevati, sono state effettuate da laboratorio esterno.

I risultati ottenuti, sono riportati nel rapporto di prova in allegato.

Conclusioni

In considerazione dei risultati riscontrati, si può affermare che le emissioni della Ditta **Meres s.r.l.**, risultano conformi ai limiti stabiliti dal D.Lgs. 152/06 e dal D.D. n. 360 del 16/2/10.

Atripalda, lì 8/7/24

Il Tecnico Dott. Chim. Francesco Chirola

STUDIO ASSOCIATO ECOTECH

dott. chim. Francesco Chirola - dott. biol. Antonio Iandolo

Via Ferrovia, 46 - 83042 Atripalda (Av)

Tel/fax: 0825 624018 - email: ecotek2016@gmail.com

C.F. e P. IVA: 02877560645

Consulenze in campo Ambientale e Industriale HACCP – Acque –Fonometrie – Rifiuti Sicurezza e Igiene luoghi di lavoro Pratiche AUA – Emissioni

Rapporto di Prova del 8/7/24

Oggetto: prelievo ed analisi emissioni in atmosfera.

Richiedente: Meres s.r.l.

Luogo prelievo: Via Pianodardine – Zona A.S.I. di Avellino

Punti Emissione: Tunnel Espansione Colata - Emissioni da E1 a E5

Condizioni di prelievo: impianti a normale funzionamento.

Date prelievi: 28-29 e 31/5/24

Prelievo n. 1

	Provenienza	Sezione allo sbocco mq	Sostanza inquinante	Concentrazione emissione mg/Nmc	Flusso di massa Kg/h	Portata Nmc/h	Temp. °C	Veloc. sbocco m/s	Imp. Abbatt.	Metodiche
E1	Tunnel Espansione Colata	0,785	C.O.V. tot. T.D.I.	< 1 < 0,5	0,025 < 0,012	24.916	20,5	9,8		
E2	Tunnel Espansione Colata	0,785	C.O.V. tot. T.D.I.	< 1 < 0,5	0,026 < 0,013	25.670	20,6	10,1	Carboni attivi	UNI EN 13649:2015 OSHA 42
Е3	Tunnel Espansione Colata	0,636	C.O.V. tot. T.D.I.	< 1 < 0,5	0,02 < 0,01	20.180	20,6	9,8		
E4	Tunnel Espansione Colata	0,636	C.O.V. tot. T.D.I.	< 1 < 0,5	0,022 < 0,011	21.842	20,4	10,6		
E5	Tunnel Espansione Colata	0,636	C.O.V. tot. T.D.I.	< 1 < 0,5	0,02 < 0,01	19.363	20,5	9,4		

Prelievo n. 2

	Provenienza	Sezione allo sbocco mq	Sostanza inquinante	Concentrazione emissione mg/Nmc	Flusso di massa Kg/h	Portata Nmc/h	Temp. °C	Veloc. sbocco m/s	Imp. Abbatt.	Metodiche
E1	Tunnel Espansione Colata	0,785	C.O.V. tot. T.D.I.	< 1 < 0,5	< 0,026 < 0,013	26.469	20,2	10,4	Carboni attivi	UNI EN 13649:2015 OSHA 42
E2	Tunnel Espansione Colata	0,785	C.O.V. tot. T.D.I.	< 1 < 0,5	< 0,025 < 0,013	25.170	20,5	9,9		
Е3	Tunnel Espansione Colata	0,636	C.O.V. tot. T.D.I.	< 1 < 0,5	< 0,02 < 0,01	19.795	20,2	9,6		
E4	Tunnel Espansione Colata	0,636	C.O.V. tot. T.D.I.	< 1 < 0,5	< 0,02 < 0,01	20.187	20,5	9,8		
E5	Tunnel Espansione Colata	0,636	C.O.V. tot. T.D.I.	< 1 < 0,5	< 0,02 < 0,01	20.386	20,6	9,9		

